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Obesity is a heterogeneous condition which results from complex interactions

among sex/gender, sociocultural, environmental, and biological factors. Obesity

is more prevalent in women in most developed countries, and several clinical and

psychological obesity complications show sex-specific patterns. Females differ

regarding fat distribution, with males tending to store more visceral fat, which is

highly correlated to increased cardiovascular risk. Although women are more

likely to be diagnosed with obesity and appear more motivated to lose weight, as

confirmed by their greater representation in clinical trials, males show better

outcomes in terms of body weight and intra-abdominal fat loss and

improvements in the metabolic risk profile. However, only a few relatively

recent studies have investigated gender differences in obesity, and sex/gender

is rarely considered in the assessment and management of the disease. This

review summarizes the evidence of gender differences in obesity prevalence,

contributing factors, clinical complications, and psychological challenges. In

addition, we explored gender differences in response to obesity treatments in

the specific context of new anti-obesity drugs.
KEYWORDS
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1 Introduction

Obesity is a chronic progressive and relapsing disease (1) associated with reduced

quality of life, increased morbidity, disability, and lower life expectancy (2). Although

obesity has reached epidemic proportions worldwide, impacting 650 million adults globally

(3), only in recent years, obesity heterogeneity has been recognized, and sex/gender

differences increasingly recognized in several aspects of the disease, including overall

prevalence and complications.
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However, sex/gender is still rarely considered in the assessment

and management of the disease.

Thus, this review aimed to summarize the evidence of gender

differences in obesity prevalence, contributing factors, clinical

complications, and psychological challenges, but also to explore

gender differences in response to obesity treatments in the specific

context of new anti-obesity drugs.
2 Obesity: nods of epidemiology
and etiopathogenesis

In contrast to overweight, obesity is more prevalent among

females (24%) compared to males (22%), with even greater

differences in certain regions. Although obesity prevalence is

globally higher in people with lower educational attainment,

gender analysis shows heterogeneity based on socioeconomic

status as defined by income, education, employment status, and

place of residence (4). For example, in low- and middle-income

countries, obesity is prevalent in women of higher socioeconomic

classes, but in economically developed countries, obesity mainly

affects women of lower socioeconomic status (5), providing

epidemiologic evidence of the ‘obesity transition’ model (6).

The differences, as mentioned above, in obesity prevalence

between men and women may be in part explained by gender

norms and identity that condition eating habits and physical

activity behaviors. Indeed, gender-based differences in eating

behaviors are already reported by school age (7), and greater

preference for foods high in sugar (8) and a stronger association

of stress-related eating with weight gain have been described in

women (9, 10). Other factors may be represented by sex hormones

and physiological events during the women’s life course, like

pregnancy and menopause (11, 12). Additionally, neuroimaging

studies found disparities between genders in structural and

functional obesity-related brain alterations (13) with stronger

neural response to food-related stimuli in women (14, 15).

In women’s life course, maternal obesity has gained growing

attention not only for increasing the risk of pregnancy

complications like gestational diabetes, hypertension, and

preeclampsia but also for affecting fetal growth and for being an

independent risk factor for childhood and adult obesity (16).

Although changes in the environment have undoubtedly led to

the steep increase in obesity prevalence by influencing poor quality

food choices, overeating, unlimited availability of food, and

sedentary lifestyle (17), the etiopathogenesis of obesity is complex,

resulting from an interaction between environmental and innate

biological factors.

Twin, family and adoption studies have highlighted a strong

heritability component to BMI, which varies between 40% and 70%

(18). After that, more than 100 susceptibility genes associated with

obesity have been identified in genome-wide association studies

(GWAS) (19). Individuals who inherit larger subsets of

susceptibility genes are more prone to gain weight in response to

the ‘obesogenic’ environment (20). Namely, gene-environment

interactions generate a unique human biological and behavioral
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interface that thoroughly explains the interindividual variations of

body weight response to an identical environment.

Thus, obesity extends far beyond individual behavior (21) and

the energy balance equation of ‘calories in’ and ‘calories out’

progressively emerged as an oversimplification of its

complex pathogenesis.

Currently, the neuronal pathways that control the homeostatic

and hedonic aspects of food intake have been recognized as major

players in the development of obesity. Notably, in one of the largest

GWAS in terms of both individuals and single nucleotide

polymorphisms (SNPs) studied, the 97 loci associated with BMI

that were identified were all expressed in the brain (22), consistent

with the observation that even the monogenic forms of obesity so far

described are caused by genetic defects affecting the central

regulation of appetite and satiety (23), and therefore supporting

the primacy of the central nervous system in the maintenance of

energy homeostasis. The homeostatic pathway relies on

proopiomelanocortin pro-opiomelanocortin (POMC)/cocaine-

and amphetamine-regulated transcript (CART) and neuropeptide

Y (NPY)/agouti-related peptide (AgRP) neurons of the arcuate

nucleus of the hypothalamus and controls energy balance by

increasing hunger after weight reduction. It is an archaic system

that evolved over ages and is characterized by scarce food

availability. Consequently, it results in an imbalance toward

energy conservation and is maladaptive to the current ‘obesogenic

environment’. Instead, the hedonic control system of food intake,

coordinated by the nucleus accumbens and the mesolimbic

dopaminergic system, focuses on the reward associated with food

consumption regardless of energy needs (24).

In patients with obesity, as a major consequence of gene-

environment interactions, the homeostatic system is dysregulated

and results in an increased food intake that sustains and maintains

excess adiposity (25).

The pathophysiology of obesity is further operational in

response to a weight loss, explaining why body weight tends to be

regained over time. Indeed, a high equilibrium level of body fat

mass (also termed “set point”) is an unrelenting feature of obesity

and an integral part of its pathophysiology (19, 26). Consequently,

weight loss would trigger hormonal and neurotransmitter

homeostatic responses, which determine an increase in appetite

and reduced energy expenditure (27) until weight is regained (28).

Even the hedonic system drives the weight back by increasing the

desire for foods with greater caloric density and high fat and

sugar content.

Sexual asymmetry is evident in the organization of the POMC

system. Indeed, female brain presents increased POMC neuronal

fibers, higher levels of the POMC protein and decreased NPY

expression compared to males. Accordingly, while testosterone

stimulates NPY expression in the hypothalamus in males, in

females estradiol impairs the excitability of the NPY neurons

(29). In addition, leptin concentrations are four times higher in

women (30), and in rat models female brain is more sensitive to

leptin, while male brain is more sensitive to insulin (31).

Neuroimaging studies also helped identify gender differences in

obesity-associated structural and functional alterations throughout

the brain. Indeed, male obesity appears to be associated to more
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evident changes in cortical somatosensory regions, whereas reward

regions appear to be more involved in female obesity, consistent

with distinct neural activation pattern in response to food-related

stimuli for each sex/gender (13, 14).

To add complexity to understanding obesity pathogenesis,

nutritional and environmental factors can influence biology

through epigenetic changes. These alterations in the DNA and

histone structure, which can be inherited or arise de novo in a tissue-

specific manner, alter gene expression persisting across generations

(32, 33). In this view, growing evidence has indicated that excess

maternal body weight or weight gain during pregnancy participates

in the programming of body weight and metabolism in offspring by

epigenetics, for long affecting their homeostatic control system of

energy balance (34).

The ‘obesogenic’ environment can also alter metabolic function

and homoeostasis by modifying gut microbiota diversity and

composition (35). Obesity-associated microbiota influences the

efficiency of calorie uptake from ingested foods, host energy

harvesting, insulin resistance, hepatic metabolism, inflammation,

as well as central regulation of appetite and satiety and food reward

signalling, which all have crucial roles in obesity. Moreover, some

strains of bacteria and their metabolic products might directly target

the brain by vagal afferent innervation or immune-neuroendocrine

mechanisms (36, 37).
3 Assessment of obesity by gender

The value of the BMI for tracking trends of weight in the

population and identifying health risks is widely recognized (38).

However, the BMI has serious limitations for individuals due to its

high specificity but low sensitivity in identifying excess adiposity (39),

accounting for only 25% of body fat variance in both sexes (40).

Consequently, although clinical guidelines suggest using BMI as a

starting point, whenever it is above the appropriate ethnic cut-offs

(41, 42) body fat should be assessed by bioelectric impedance and

Dual X-ray absorptiometry (DXA). The use of magnetic resonance

imaging (MRI), computed tomography (CT), or more advanced

scanning methods (43), although providing the most accurate

measurements, is limited in clinical practice by costs and viability.

Another limitation of BMI is that it does not provide any

information on abdominal fat distribution, which is crucial in

determining obesity-related health risks. Waist circumference

(WC) is the measure of choice to diagnose central obesity as

compared to other combined indices, including waist-to-hip ratio

(WHR), weight-to-height ratio (Wt/Height), or waist-to-height0.5

ratio (WC/Height0.5), whose predictive value highly differs for the

various markers of cardiometabolic risk (44). However, it should be

noted that WC, though improving the predictive value of BMI,

remains a suboptimal predictor of mortality (45, 46).

Anthropometric measures and body composition analysis allow

us to appreciate gender differences, with women having greater fat

mass and a relatively more peripheral distribution of adiposity.

These differences are already evident in early life but become much

more apparent in adolescence due to an increase in steroid

hormone concentrations. Accordingly, parity and menopause
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have been related with changes in body composition (47) and, in

particular, with gains in visceral and central adiposity (48) (49).

However, differences in WC between adult men and women are

seen at all ages and levels of fatness, fully justifying the current

practice of using different waist thresholds for men and women.

Age-related changes in body composition may increase fat mass

and decrease muscle mass (50) in both males and females, with men

typically experiencing a faster decline in muscle mass (51).

Accordingly, in the community-dwelling elderly population, men

are more likely than women to have sarcopenia (52), a condition

characterized by age-related low muscle strength, quantity and/or

quality, and reduced functional performance (53) driven mainly by

hormonal changes, nutritional factors, inflammation and disease

states. Despite its lower prevalence, higher mortality risk is

conferred by sarcopenia in women (54). Sarcopenic obesity,

defined by the coexistence of both sarcopenia and obesity, further

increases morbidity, disability, and mortality than obesity or

sarcopenia alone, so the assessment of indices of sarcopenia is

highly recommended (55).

Nevertheless, as mentioned above, neither BMI nor other

anthropometric measurements fully capture the heterogeneity of

obesity, which is instead more comprehensively assessed using the

Edmonton Obesity Staging System (EOSS), a validated 5-stage

system based on obesity-related medical, physical, and

psychological impairments. Increasing EOSS severity strongly

correlates with mortality (45, 56) and adverse outcomes like

postoperative complications (57), and is associated with increased

health service and multiple-drug use and less weight loss (56, 58). In

women with obesity, EOSS may also be helpful to estimate the risk

of cesarean delivery after labour induction (59) and pregnancy rates

after fertility treatments (60). Thus, EOSS may influence patients’

management and guide treatment prioritization (61, 62).
4 Clinical complications

Obesity is associated with an increased risk of all-cause

mortality, with cardiovascular disease (CVD) and malignancy as

the most common causes of death (63).

The excess adiposity can cause clinical complications through

anatomical, load-bearing and metabolic effects. Also, fat

distribution, genetics, lifestyle and psychological factors play a

role in the propensity to develop different obesity complications.

In fact, obesity can present with various disease burden and lead to

many clinical complications that require an individualized assessment

(Figure 1).
4.1 Type 2 diabetes

Obesity and type 2 diabetes (T2D) are strongly linked. Indeed,

more than 80% of people with T2D have a BMI>25 Kg/m2, and

more than 90% have a waist circumference above the normal limits

(64). The prevalence of T2D in the general population is around 6%,

while in the population affected by obesity it rises up to 20% (65).

The risk of developing T2D is 6- and 12-fold increased in men and
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women with obesity, respectively. In recent years, this strong

association between obesity and T2D has led to define a new

condition called “diabesity”, so that testing for T2D should be

considered at any age in adults with overweight or obesity who have

one or more of the risk factors (Table 1) (66).

In randomised controlled trials, lifestyle interventions for

weight loss resulted in several metabolic benefits, such as

decreased insulin resistance, blood pressure, inflammation,

incidence of T2D and improved lipid profiles and glycaemic

control in subjects with diabetes. Over 15% weight loss can lead

to remission of T2D, especially when diabetes duration is short,

heart failure improvements, and cardiovascular mortality

reductions (67, 68).

The results of the post-hoc analysis of the Look AHEAD Study,

involving also a population of 5,145 adults with diabetes randomly

assigned to an intensive intervention or lifestyle control, suggest a

strong association between the extent of weight loss and incidence of

CVD in people with T2D. Furthermore, a close correlation between
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weight loss and the incidence of diabetes have been shown,

underlining the need for intervention on excess weight, particularly

in people with diabetes, dyslipidemia, and hypertension (69).

Besides lifestyle modifications and pharmacotherapy, for

individuals with a BMI > 40 Kg/m2 or BMI > 35 Kg/m2 with

complications bariatric surgery (BS) represents another therapeutic

option. Standard bariatric operations, including bilio-pancreatic

diversion, sleeve gastrectomy (SG), Roux-en-Y gastric bypass

(RYGB), and adjustable gastric banding, benefit individuals'

metabolic profiles to varying degrees (70). It is well known that the

benefits of BS go beyond weight loss. Namely, BS reduces chronic

inflammation, alters gut hormones and microbiota promoting long-

term remission of T2D (71). Indeed, in patients with a duration of

T2D not exceeding 8-10 years, the possibility to get a complete

remission is very high with both restrictive interventions, such as SG

(72), and malabsorption ones (73). These results have contributed to

hypothesize that a chronic disease like T2D could be

considered reversible.
4.2 Gastrointestinal disorders

Central obesity is closely linked with Non-Alcoholic Fatty Liver

Disease (NAFLD) development which consists in a range of

progressive stages of liver disease. Indeed, ectopic fat

accumulation in the liver, together with hepatic inflammatory

changes and insulin resistance, drives the progression from

simple steatosis to non-alcoholic steatohepatitis (NASH) which

can ultimately lead to liver cirrhosis, liver failure and

hepatocellular carcinoma.

Diagnostic practice includes clinical parameters, serum-based

tests or imaging (such as ultrasound scan, vibration-controlled
TABLE 1 Risk factors for type 2 diabetes.

First-degree relative with diabetes

High-risk race/ethnicity (African American, Asian American, Latino, Native
American; Pacific Islander)

Hypertension (> 140/90 mmHg or on therapy for hypertension)

HDL cholesterol level < 35 mg/dl and/or triglycerides level > 250 mg/dl

Women with polycystic ovary syndrome

Physical inactivity

The presence of other conditions of insulin resistance
From ref. (66).
FIGURE 1

Clinical complications of obesity that may differently affect males and females. Created with BioRender.com.
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transient elastography or magnetic resonance elastography),

although histologic evaluation with liver biopsy remains the gold

standard to diagnose NAFLD (74). Multiple noninvasive tests,

which are based on clinical and biochemical parameters including

waist circumference, BMI, platelet count, albumin, liver enzymes

and other criteria for metabolic syndrome, have been proposed to

screen for NAFLD and NASH but have modest accuracy. In recent

years, an international panel of experts has proposed a new

definition for NAFLD: metabolic dysfunction-associated fatty

liver disease (MAFLD) (75). The diagnosis of MAFLD is based on

the presence of hepatic steatosis (detected by serum biomarker

scores, imaging techniques, or liver biopsy) along with any of the

following three metabolic conditions: overweight/obesity, T2D, or

evidence of metabolic dysregulation (defined by at least two factors among

increased waist circumference, hypertension, hypertriglyceridemia, low

serum HDL-cholesterol levels and impaired fasting glucose). Hence,

based on this new definition, MAFLD can be diagnosed regardless of

daily alcohol consumption and other liver diseases, and further studies will

need to investigate the impact of MAFLD on the progression

versus cirrhosis.

The prevalence of NAFLD is higher in men up to middle age

because pre-menopausal women appear to be relatively protected.

However, this protective capacity is lost in post-menopause when

the prevalence of NAFLD is similar in both sexes and the risk of

NAFLD progression is greater in women. The sexual dimorphism

in NAFLD has been increasingly attributed to beneficial actions of

estrogens on lipid metabolism (76). Indeed, estrogens promote

gluteo-femoral fat distribution preventing intrahepatic lipid

storage and exhert direct anti-inflammatory, anti-oxidant, anti-

fibrotic, anti-apoptotic properties on liver parenchyma (77).

Estrogens can also beneficially modulate gut microbiota and bile

acids composition (78).

Epidemiologic data have demonstrated that obesity is an

important risk factor for the development of gastroesophageal

reflux disease. The prevalence is proportional to the severity of

obesity: 23% in individuals with a BMI<25, 27% with a BMI 25-30,

and 50% with a BMI>30 (79). There is also growing evidence that

obesity is associated with complications related to longstanding

gastroesophageal reflux, with or without hiatal hernia, such as

erosive esophagitis, Barrett’s esophagus, and esophageal

adenocarcinoma mainly in the presence of central obesity (80).
4.3 Respiratory disease

Obstructive sleep apnea (OSA) is a sleep-related breathing

disorder characterized by episodes of partial or complete collapse

of the upper airway during sleep. It is common in individuals with

obesity and often undiagnosed. The repetitive upper airway

obstruction often results in oxygen desaturations and arousal

from sleep. Symptoms of OSA may include snoring, low sleep

quality with frequent arousal, daytime sleepiness, mouth dryness on

awakening and headaches. OSA is an independent risk factor for

several clinical consequences, including blood hypertension, CVD,

stroke, and abnormal glucose metabolism potentially due to

decreases in oxygenation causing oxidative stress and endothelial
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dysfunction. The STOP-BANG questionnaire (81) is a helpful

screening tool for OSA. Although polysomnography is the “gold

standard” for diagnosing OSA, it requires an overnight observation

in the patient’s home, and most cases remain undiagnosed. Per each

unit increase in BMI the odds of developing OSA increases by

1.14 (82).

OSA is more prevalent in men than women, but the difference

reduces in older ages due to the increased prevalence of OSA in

post-menopausal women (83). In fact, estrogen and progesterone

are protective against OSA due to their effect on the upper-airway

dilator muscles (84). Underdiagnosis of OSA in women have been

also reported possibly due atypical presentation of symptoms or

underreported snoring or witnessed apneas. There are also sex-

related differences in polysomnographic findings such lower Apnea

Hypopnea Indexes (AHIs), shorter apneic episodes, less severe

desaturations in women (85).

OSA can negatively impact people’s well-being, quality of life,

and work performance. It also raises the risk of road accidents by

increasing the risk of falling asleep while performing daily activities.

In younger women (<65 years old), OSA has also been associated

with mild cognitive impairments in memory, vigilance, attention,

and executive domains by causing daytime sleepiness and fostering

gradual remodeling of cerebral vasculature as well as neural

damage (86).

The most common treatments for symptomatic OSA are

nocturnal continuous positive airway pressure (nCPAP) and

weight loss (87). Pathological obesity is always associated with

severe OSA, and BS is an effective method of treatment with

long-term benefits. A meta-analysis comparing the effects of

laparoscopic SG and RYGB on OSA demonstrated that both

surgical procedures effectively reduce OSA (88).
4.4 Infertility

Overweight and obesity can affect reproductive health and can

result in infertility in both male and female. People with excess

weight, even slightly, may present difficulties in natural conception

as well as in the various assisted fertilization techniques for both

sexes. The most common causes of infertility are ovulatory

dysfunction, male factor infertility, and tubal disease, and the

principal cause of anovulation (70%) is polycystic ovary

syndrome (PCOS), which occurs more frequently in women with

obesity. Furthermore, the presence of BMI>27 itself is associated

with anovulation independent of PCOS (89). The pathogenic

mechanisms that link excess body weight to female infertility are

complex and primarily due to functional alteration of the

Hypothalamic-Pituitary-Ovarian Axis (HPO) axis. Obesity is

frequently associated with higher circulating insulin levels, which

stimulates ovarian androgen production, as well as peripheral

aromatization of androgens to estrogens. Increased circulating

estrogens exert negative feedback on the HPO axis, affecting

gonadotropin production with consequent ovulatory dysfunction

and menstrual abnormalities.

Several studies have shown that obesity negatively impacts on

spontaneous pregnancy rates and increases the need to resort to
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assisted reproduction techniques (ART). In addition, obesity has

been associated with negative fertility treatment outcomes such as

the need for higher doses of gonadotrophins, increased cycle

cancellation rates and fewer oocytes retrieved (90).

On the other hand, obesity may also impair male reproduction,

male obesity being likewise involved in embryo quality (91) and lower

success rates of ART (92) as female obesity.Obesity may negatively

affects both conventional and biofunctional sperm parameters in

males with obesity. A meta-analysis including 115 population-based

studies reported that male partners with obesity have significantly

higher infertility with an odds ratio of 1.66 compared to normal

weight male partners. Most men with obesity present altered steroid

synthesis and metabolism. Indeed, the visceral fat excess associated

with hyperinsulinemia decrease total and free testosterone and

inhibin B concentrations by promoting the conversion of

testosterone into 17ß-estradiol through higher aromatase activity

(93). A “metabolic” form of male hypogonadism mediated by

hyperinsulinemia, inflammation, epigenetic modifications and

increased nuclear and mitochondrial DNA damage, with a

downstream inhibitory effect on spermatogenesis, has been

described; male obesity may contribute to its development (94).

The dysregulation of sex hormones is not the only cause of

infertility in males with obesity. A pivotal role is also played by heat-

induced damage. Testicular thermal stress increases in men with

obesity, mainly due to fat accumulation in the suprapubic region

and around the pampiniform plexus. A vicious cycle is therefore

present between visceral adipose tissue excess, systemic insulin

resistance, and testicular malfunctioning (95).
4.5 Cancer

Based on the International Agency for Research on Cancer

(IARC), obesity is associated with an increased risk of many cancers

such as colorectal, kidney, esophagus, endometrium, breast,

pancreas, thyroid, liver, ovary, gallbladder, and prostate cancer.

The mechanisms underlying this association are multiple but

especially related to elevated levels of free circulating hormones

(insulin and estradiol) and their impact on hormone-dependent

cancers, such as breast and prostate (96). Gender differences in

obesity-related cancers, therefore, need to be considered. The

estimate of the obesity-related global cancer burden, expressed as

population attributable fraction (PAF), is 11.9% in men and 13.1%

in women. In men, the largest PAF is observed for esophageal

adenocarcinoma, while in women for endometrial cancer. Overall,

obesity-related cancers affecting both genders show a higher

incidence in males: concerning gastrointestinal cancers, BMI was

positively associated with colorectal cancer only in men, while the

incidence of esophageal adenocarcinoma and hepatocellular

carcinoma (HCC) is higher in men than women with obesity

(97). A role seems to be played by the decreased levels of

adiponectin and the increased secretion of proinflammatory

adipo-cytokines such as leptin, resistin and IL-6 in males with

obesity. Indeed, they can promote initiation, progression, and
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metastasis of tumors, with the exception of adiponectin, which

has anti-carcinogenic effects (98).

On the contrary, gallbladder cancer is more frequent in women,

probably due to hormonal factors, such as high estrogen exposure.

Increased risk of cancer-death per 5 kg/m2 BMI increase was found

for hepatocellular carcinoma, intra-, and extrahepatic

cholangiocarcinoma in women (99). It is of interest to rule out as

a higher risk of gynecological cancer (+35% for ovarian cancer,

+19% for endometrial cancer and +5% for breast cancer) has been

recently reported in a large cohort of cholecystectomized

women (100).

Pancreatic cancer is another tumor associated with obesity in

both genders, although its incidence is slightly higher in men, where

a strong link with fasting hyperinsulinemia has been reported

Regarding renal cell cancer, although epidemiological studies

report that males have a double greater risk of developing kidney

cancer and a higher death rate than females, a meta-analysis

indicates a stronger association between renal cancer and increase

in BMI in in women (34%) than men (24%) (101).

In men, besides prostate cancer risk, a 5 Kg/m2 increase in BMI

has been associated with a 15% increase in prostate cancer mortality

and a 21% increased risk of its biochemical recurrence. Although

some studies have shown a consistent effect of androgens on

prostate cancer, the subsequent in-depth analysis showed no

associations between the risk of prostate cancer and sex

hormones, unlike other mechanisms such as inflammatory cells

that play important roles in tumor progression via adipose-

secretory cytokines or chemokines (102).

Thyroid cancer is 5-fold more common in women than men,

suggesting a key role for levels of endogenous estrogens, acting as a

growth factor for benign or malignant thyroid nodules. Other

putative mechanisms include insulin resistance, IGF-1, adipo-

cytokines, TSH, sex hormones as well as chronic subclinical

inflammation (102). However, the relationship between thyroid

neoplasms and sex appears complex, and a recent pooled analysis

from the Asia Cohort Consortium has shown that, although the

overall thyroid cancer risk was lower among underweight men and

women, the papillary cancer risk may be elevated among

underweight men (103).

Among obesity-related cancers in females, a detrimental effect

of obesity on the risk of hormone-sensitive breast cancer in

postmenopausal women has been provided by multiple studies.

About 7% of all postmenopausal breast cancer can be related to

overweight/obesity (102), probably due to the increased levels of

estrogens due the increased aromatase enzyme activity. As a matter

of fact, the increase in breast cancer risk is decreased by the

reduction of serum estrogen concentrations.

However, obesity may contribute to malignant progression

through other mechanisms, being adipose tissue able to produce

bioactive molecules like cytokines, chemokines and vascular growth

factors which play integral roles in mediating physiological

processes and influencing cancer-related pathways. Inflammatory

mediators crosstalk with cells by acting on surface receptors,

activating inflammatory signaling pathways, and modifying the
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behaviour of the tumor, the immune system and the stromal cells

(104). Targeting dysfunctional obese breast adipose tissue through

weight reduction or pharmacological approaches might help in

decreasing breast cancer risk; however, more intervention trials and

well-designed observational studies in diverse populations are

needed to elucidate the impact of body weight and composition

and their changes on breast cancer outcomes (105).
4.6 Knee osteoarthritis and osteoporosis

Obesity is associated with comorbidities of the musculoskeletal

system, such as osteoarthritis (OA) and osteoporosis (106). Obesity-

related OA is a degenerative joint disease that can affect any joint,

even though knee osteoarthritis (KOA) is the most common form.

OA is characterized by progressive deterioration of the articular

cartilage, subchondral bone remodeling, and synovial membrane

inflammation (107). This complex condition substantially impacts

patients’ quality of life, and clinical and animal studies have revealed

that its incidence increases with increasing BMI (108). Notably, the

KOA prevalence in patients with obesity is around 30.6% compared

with 16.4% in normal weight people, but in women this difference is

even more evident in women with obesity being 4-6 times higher

than normal weight women (109). Even more, BMI >27 Kg/m2

accounts for 25% of cases of KOA in women, also with greater

severity, against the 20% in men (109).

From a pathological point of view, it is believed that structural

damage to the joint derives from both mechanical and metabolic

factors. The excessive mechanical load on the joint and muscle

weakness due to overweight contributes to the osteoarthritic joint

process, including joint deformation, instability, and loss of

cartilage homeostasis (108). On the other side, an important role

seems to be played by obesity-induced inflammation. Indeed,

adipokines may exert detrimental effects on joint tissues, as

suggested by the expression of leptin receptors on the surface of

chondrocytes, synoviocytes and subchondral osteoblasts and by its

ability to increase degradative enzymes levels, such as matrix

metalloproteinases (MMPs) (110); also the concentration of

proinflammatory citokynes, such as IL-6, has been found

increased in the synovial fluid and serum of OA patients and

correlated with the incidence and severity of the disease (111). In

addition, the presence of estrogen receptors in chondrocytes and

synovia (112) together with the observation of a more steeply rise in

KOA incidence in women close to the age of menopause than in

men suggest a protective role of estrogens in joint health (113).

Estrogen receptors are also crucial in regulating bone turnover

(112). Indeed, osteoporosis, which is characterized by low bone

mineral density and bone microarchitecture alteration with a

consequent increased risk of fracture, although affecting both

sexes, most commonly occurs in postmenopausal women.

However, besides the well-known direct negative effects of

estrogen-deficiency on bone (106), the increased visceral adiposity

after menopause, by inducing a pro-inflammatory phenotype with

altered cytokine expression and immune cell profile, may

detrimentally contribute to induce osteoblast apoptosis and

osteoclastogenesis (114).
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5 Cardiovascular and renal
complications in obesity

5.1 Obesity and cardiovascular risk

Obesity has been recognized as an established risk factor for

cardiovascular disease and heart failure for decades; several factors

mediate this detrimental relationship. Visceral adiposity has

emerged as a better predictor of cardiometabolic risk than BMI:

visceral fat deposition, indeed, promotes metabolic and pro-

inflammatory abnormalities able to enhance oxidative stress,

endothelial dysfunction and insulin resistance (115). However,

women’s pattern of fat distribution varies according to the

different stages of life. Premenopausal women have more

subcutaneous adiposity and less visceral adiposity than men

(116); they tend to accumulate more fat in the gluteus–femoral

area (the “ginoid” phenotype) and often remain metabolically

healthy. In women with overweight and obesity gluteus–femoral

fat has been found to play a protective effect on glucose and lipid-

related cardiometabolic risk, and associated with a beneficial

adipokine profile and fewer pro-inflammatory molecules

compared with subjects with prevalent visceral fat distribution

(117, 118). Gluteus–femoral fat also exerts protective vascular

effects: indeed it is associated with lower aortic calcification and

arterial stiffness (119), as well as with a decreased progression of

aortic valve calcification in women (120). Young women also show

a greater prevalence of brown adipose tissue (BAT), which affects

energy metabolism and is inversely related to age and BMI (121).

Detrimental mechanisms that worsen the cardiovascular risk

profile of women during the peri-menopausal transition are related

to the rise in visceral, perivascular and epicardial adiposity due to

the decline in estrogen levels (122–124). Particularly, perivascular

and epicardial fat are strongly associated with coronary and

abdominal aortic calcium independently from traditional

measures of obesity playing a possible direct role in the higher

risk of CVD reported after menopause (125, 126). In addition,

epicardial fat may adversely affect cardiac muscle function and

remodelling with a possible pathogenetic role in heart failure and

arrhythmias (127, 128). This highlights the importance of specific

management strategies aimed at promoting weight loss and

targeting visceral fat stores.

In recent years, sarcopenic obesity, a functional and clinical

condition characterized by the coexistence of loss of skeletal muscle

mass and function and an excess of adipose tissue, has raised attention

as a major determinant of the increased cardiovascular risk profile of

individuals with obesity, as well as of several other clinical

complications such as frailty, reduced bone mineral density and

fractures, cancer, and an increased risk of hospitalization and all-

cause mortality (129, 130). This may be ascribed to a more prominent

loss of muscle and bonemass with increasing age and a greater increase

of visceral fat following menopause in women compared with men of

similar age (131, 132). Targeting health behaviours, such as dietary salt

reduction, smoking cessation, increasing physical activity/exercise

training, and reducing caloric intake, is critical for fighting

sarcopenic obesity-associated morbidities and mortality (133).
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5.2 Obesity and renal risk

Obesity and chronic kidney disease (CKD) represent major

health problems worldwide. Improvements in socioeconomic

conditions have contributed to the rise in obesity rates (134),

while the prevalence of CKD increases with aging (135).

Population-based observational studies have established a

significant association between obesity and the development and

progression of CKD (136, 137); this configures a true clinical

challenge, being both independently associated with increased

rates of cardiovascular disease and all-cause mortality. In a

systematic review and meta-analysis investigating the combined

effects of BMI and metabolic status on CKD risk, individuals with

obesity showed a higher risk of CKD compared to metabolically

healthy normal-weight individuals, even in the absence of

remarkable metabolic abnormalities (138).

In a classic view, the chronic renal complication of obesity has

been defined as obesity-related glomerulopathy, a glomerular

disease characterized by glomerulomegaly presenting alone or

with focal and segmental glomerulosclerosis (139). However, the

pathophysiology of kidney impairment in obesity is complex, with

the contribution of abnormal renal haemodynamics, inflammation,

and metabolic derangement. It has been hypothesized that insulin

resistance increases renal blood flow (140) leading to hypertensive

nephrosclerosis, and demonstrated that renal plasma flow and

glomerular filtration rate (GFR) are elevated in individuals with

obesity, suggesting a state of renal vasodilation (141). Increased

activation of the renin-angiotensin-aldosterone-system (RAAS) in

obesity due to sympathetic stimulation and synthesis of adipokines

by visceral fat causes afferent arteriolar dilation and efferent

arteriolar vasoconstriction. These factors together with physical

compression of the kidney parenchyma by visceral fat increase

intra-glomerular pressures, which contribute to hyperfiltration,

glomerular hypertrophy, focal glomerulosclerosis, and proteinuria.

In obesity, the production of pro-inflammatory adipocytokines

causes chronic low-grade systemic inflammation and oxidative

stress; in detail, increased leptin may promote renal fibrosis and

glomerulosclerosis, while reduced adiponectin is a determinant of

albuminuria development (139). Therefore, adipose tissue

inflammation in obesity is multifactorial and drives renal

dysfunction through a bidirectional crosstalk. CKD reduces

subcutaneous fat volume, promoting the redistribution of lipids to

ectopic depots with subsequent lipotoxicity (142). Indeed, ectopic

renal lipid deposition also occurs in CKD, increasing

renal inflammation.

Another peculiar aspect influencing CKD onset and progression

in individuals with obesity is the presence of the OSA.

The renal medulla, whose blood flow is tightly regulated to

maintain the interstitial medullary osmotic gradient, is highly

vulnerable to ischemic injury. Hypoxia in OSAS patients over-

activates the sympathetic and RAAS systems, which are associated

with long-term renal impairment (143). Longitudinal studies have

revealed that nocturnal hypoxia is independently associated with

faster declines in eGFR, cardiovascular and all-cause mortality (144,

145). A quite recent observation performed in a large cohort from

Taiwan has shown that OSAS accelerates kidney dysfunction in
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subjects without hypertension and diabetes, particularly in

women (146).

In exploring the relationship between gender and CKD, several

factors influencing gender-related disease progression might be

proposed. First, GFR-estimating equations may perform better in

men than women, possibly overestimating the prevalence of the

disease in women. Second, due to hormonal differences, women

may be protected from kidney disease earlier in life, a protection

that may wane after menopause. Third, the higher health awareness

of women often plays a role, with women undergoing more

frequently screening programmes in comparison to men. Also, in

traditionally hierarchical societies, women may not have equal

access to health care (147). In women, waist circumference

mirrors visceral adipose tissue better than in men, and visceral

adipose tissue accurately predicts CKD in women, thus representing

a reliable sex-related cardiometabolic risk marker. However, data

disaggregated by age, sex, or obesity are still scarcely available from

prospective studies (148, 149), and further large-scale studies are

required to solve the existing controversies, especially concerning

sex-specific kidney disease prognosis and establishing research

supporting precision/personalized medicine (150). Similarly,

clinical trials must ensure adequate representation of both

genders and acknowledge potential effects of sex or sex-specific

treatments when assessing outcomes.
5.3 Glomerular hyperfiltration

Glomerular hyperfiltration (GH), a phenomenon seen in several

clinical conditions like obesity and diabetes, is recognized as the

initial stage of kidney damage. There is a growing understanding

that mechanisms behind GHmay vary between men and women. In

T2D, when the progression of diabetic kidney disease was

monitored over time, women showed a three-fold greater risk

than men of developing GH over five years, while adolescent girls

with T1D had a four-fold increased prevalence of GH compared to

males of similar age and glycemic control (151).

In US youth/young adults, prevalence of GH increases from

6.5% to 11.8% moving from class 1 to class 3 obesity; factors

associated with an increased prevalence of hyperfiltration in the

bivariate analysis included elevated ALT, non‐White/non‐Hispanic

races/ethnicities, and female sex (152).

A recent cross-sectional observation of 62,379 non-diabetic

individuals from a Japanese health insurance database shows that

BMI and GH are linearly related in women, while a U-shaped

relationship is evident in men (153).

Of note, the origin of the obesity-related hyperfiltration is the

increased proximal tubular sodium (and glucose) reabsorption via

sodium-glucose cotransporter 1 and sodium-glucose cotransporter 2

(SGLT1 and SGLT2). The inhibition of the SGLT2 in the proximal

segments of the nephrons is an ideal intervention to inhibit the

tubulo-glomerular feedback and mitigate glomerular hyperfiltration

in subjects with obesity, thus representing an important breakthrough

in reducing the consequences of this phenomenon, as well as a more

accurate evaluation of anthropometric measurements (waist-to-

height ratio or, when available, DEXA or segmental impedance).
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The increased expression of angiotensin II receptor (AT1R)

induced by estradiol, a female hormone, might explain the different

gender prevalence of GH in subjects with diabetes. Hyperglycemia

activates the RAAS and elevates angiotensin II levels, leading to a

higher efferent arteriolar resistance observed in T1D women (154).

Interestingly, although GH has been shown to worsen the

progression of end-stage kidney disease (ESKD) by speeding

damage at the level of the filtration barrier, it should be noted

that advanced renal complications tend to appear more than a

decade later in women (155). Thus, women are more prone to

developing ESKD, but the overall progression of the disease is

slowed and often aligns with the woman’s transition into the

postmenopausal phase (155). These changes have been partly

linked to the differences in gene expression and sex hormones

signaling within the kidney that contribute to regulating GFR (156).

In a recent animal study, it was observed that both gender mice

developed hyperfiltration and albuminuria, but these changes were

more pronounced in ovariectomized females, which had also higher

IL-1b and TNF-a compared with not-ovariectomized counterpart

and male mice (157). This suggests that the absence of estrogen

hormones, particularly in the context of obesity, may intensify the

detrimental effects of excessive lipid accumulation and

inflammation (158). Additionally, estrogens influence the renal

blood flow through the expression of endothelial nitric oxide

synthase and the sodium reabsorption in proximal tubular cells,

providing an additional protective function (151).
5.4 Biomarkers/risk predictors of CKD in
subjects with obesity

In the last decade, attention has been paid to searching for easily

measurable biomarkers able to predict CKD onset and progression

during metabolic diseases; indications from such scientific literature

seem, so far, partially inconclusive, at least for obesity.

Recently, population-based data from 100,269 Austrian

individuals suggest that TyG index, mean arterial pressure, and

uric acid, but not total cholesterol, mediate the association of BMI

with end-stage kidney failure in middle-aged adults (159). Indeed,

uric acid is a promising biomarker for future weight gain and

cardiometabolic risk in young adults that may respond to weight

gain prevention (160).

Another suggested biomarker is remnant cholesterol,

independently associated with an increased risk of prevalent CKD

in a general middle-aged and elderly Chinese population, especially

in women, subjects with overweight/obesity, and without CVD

events (161).

A report putatively able to impact daily dietary habits is that

high-salt intake was particularly associated with a higher risk of

composite renal outcome in women, in patients <60 years of age, in

those with uncontrolled hypertension, and in those with

obesity (162).

Lastly, markers of systemic subclinical inflammation, like CRP

and IL-6, that might accelerate CKD progression correlate with
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measures of adiposity, and this association is stronger in women

than in men for all measures of adiposity as well as the entity of

visceral adiposity (163).
6 Psychological characteristics
associated with obesity

The main psychological problems observed in individuals with

obesity seem to be largely the consequence of an adverse social

environment, which exerts strong discrimination against those with

a body size above average. Psychological problems and associated

cognitive processes can contribute to the maintenance and

worsening of obesity by hindering its treatment and favoring the

adoption of an unhealthy lifestyle.

This section of the review describes the main psychological

constructs associated with more frequency in the female gender

with clinical relevance to patients’ quality of life and treatment.
6.1 Weight bias, weight stigma, and weight
stigma internalization

Weight bias is a term used to define negative attitudes towards

people perceived to have higher body weight. These irrational

attitudes are manifested by stereotypes and/or prejudices towards

these people who are considered lazy, unintelligent, unattractive,

and lacking willpower and self-discipline. At the root of these

attitudes is a moral judgment that blames the people with higher

body weight for being responsible for their condition (164).

Negative stereotypes towards people with higher weight are

rarely challenged byWestern society, which favors the development

of the weight stigma, the societal devaluation, or discrediting due to

weight (164).

The weight stigma produces actions against people with higher

weights or larger body sizes that cause exclusion and

marginalization and lead to inequalities. The weight stigma is

promoted at multiple levels: (a) structural (media, laws &

policies); (b) interpersonal (teasing/bullying, discrimination); and

(c) intrapersonal (anticipation, internalization) (165).

Both men and women are vulnerable to weight discrimination.

However, women, in particular those who are middle-aged or with

lower levels of education, experience a higher rate of weight

stigmatization than men, even at lower levels of excess weight (166).

Internalized weight stigma occurs when a person has negative

beliefs about themselves (e.g., I feel lazy, I don’t have willpower, I

hate myself for not having self-control, I feel like a failure, I feel

inferior to those who can control their weight; I am ugly and

disgusting). Internalized weight stigma can be assessed with the

Weight Bias Internalization Scale (WBIS- 10 or 11 items, 1-7,

averaged) (167), and/or the Weight Self-Stigma Questionnaire

(WSSQ - 12 items, 1-5, summed) (168).

Women report a higher level of weight bias internalization than

men, and younger participants have more internalized weight bias
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than older participants (169). In women, a correlation exists

between a higher BMI and a higher level of internalized

stigma (170).

A recent study, which evaluated 13,996 adults who sought

treatment for obesity in six countries (171), found that, by

controlling for participant characteristics and weight stigma

experiences, women reported higher weight stigma internalization

than men. No significant differences in WBIS-M scores were found

based on race/ethnicity, education, or sexual orientation. WBIS-M

scores were associated with more significant weight gain over the

past year. Participants with higher WBIS-M scores also reported

poorer mental and physical quality of life, lower self-efficacy in

eating control and physical activity, more frequent use of food as a

coping strategy, greater avoidance of gym attendance, worse body

image, and higher perceived stress. Recent studies in which the

majority of participants were women have also found an association

between internalised weight stigma and metabolic syndrome (172),

low self-efficacy (173), and eating disorder psychopathology (174).
6.2 Overvaluation of weight and shape

While most people evaluate themselves based on their perceived

performance in a variety of domains of their lives (e.g., school or

work performance, quality of interpersonal relationships, skills in a

particular sport or hobby, etc.), some judge themselves

predominantly, sometimes exclusively, in terms of shape, weight,

shape, and their control. This form of self-evaluation, termed

overvaluation of weight and shape,” is considered the core

psychopathological feature of eating disorders, such as anorexia

nervosa, bulimia nervosa and other similar states, and in about 50%

of individuals with binge-eating disorder (175), which affect a

significant larger proportion of females than males (176), because

most of the other features observed in these disorders derive directly

or indirectly from it (177). However, the overvaluation of weight

and shape it has been also observed in about 20% of those seeking

treatment for obesity without eating disorders (178).

The overvaluation of weight and shape should be distinguished

from body dissatisfaction, a term used when a person does not like

their physical appearance. Body dissatisfaction is widespread

among people and does not necessarily represent a clinical

problem because it is less associated with self-evaluation and,

generally, does not impair, as does the overvaluation of weight

and shape, the quality of life of people (179).

The overvaluation of weight and shape indicates the severity of

binge-eating disorder because it is associated with a higher

frequency of binge-eating episodes and more severe psychological

distress and psychosocial damage (175). In addition, in people with

obesity, it is more frequently reported by women than men (70.6%

versus 29.4%), and it is associated with higher weight loss

expectations, more severe eating disorder psychopathology, higher

general psychopathology, and worse mental quality of life (178).
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6.3 Low self-esteem

Self-esteem refers to how people perceive and value themselves.

In a more elaborate form, it is “the extent to which a person believes

himself to be capable, significant, successful and worthy.” (180)

Several data indicate that low self-esteem has harmful, sometimes

devastating effects on the person and their life. Indeed, low self-

esteem is associated with negative thoughts about oneself (self-

criticism), negative emotions (depression and anxiety), physical

symptoms (fatigue, low energy, or tension), problematic behaviors

(avoiding challenges or taking excessive precautions) that impair

school or work performance, interpersonal relationships, leisure,

and self-care (181). It has been also found that girls with overweight

tend to report lower levels of self-esteem compared to boys who are

overweight (182). Depending on how it is assessed, a distinction can

be made between global self-esteem and specific self-esteem based

on competence in externally (and internally) valued domains and as

a metric of social acceptance (or likely rejection) (180). Both global

and specific self-esteem should be considered when evaluating this

construct’s relationship with obesity.

Global self-esteem, which concerns an overall judgment of

one’s worth, is a construct attributed to Rosenberg, and the

questionnaire he developed, the “Rosenberg Self-Esteem Scale,” is

considered the gold standard in self-esteem research (183).

Unsurprisingly, this questionnaire has been the most widely used

in obesity research. A meta-analysis examining global self-esteem

across all age groups found an effect size of -0.36, indicating a

robust but small to moderate relationship (184). Scores in people

with obesity are significantly influenced by age and gender. Indeed,

the correlation between weight and self-esteem increased from

-0.12 to -0.22 and -0.28, respectively, in children, adolescents,

and young college-age adults, and the relationship is stronger in

females (-0.23) than in males (-0.09). A more recent systematic

review confirmed the relationship between global self-esteem and

obesity in 17 of the 21 included studies (185). The four exceptions

concerned studies carried out in samples from Asia or minority

groups in the USA.

A review of studies assessing a specific form of self-esteem

dependent on competence in various areas found that young people

with obesity score lower in physical appearance and athletic/

physical competence. In contrast, in comparison with peers

without obesity, few differences were found in academic

competence and behavioral conduct (186). However, there were

no clear differences in effects between children and adolescents, and

evidence on gender and ethnicity was lacking.

A study performed in the USA in a community sample of

children aged 6-7 years assessing the specific form of self-esteem

dependent on the degree of social acceptance or rejection found

that those with obesity were more likely to be neglected than those

of normal weight, having few positive or negative “nominations”

from peers (187). A meta-analysis of 16 studies found a significant

relationship between having an obesity condition and being
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victimized (OR = 1.51) in children aged 11 years and older (187).

A study revealed that children with obesity were more likely to be

victimized by their peers but also more likely to bully others (188).

Most studies evaluating the effects of weight-loss interventions

on self-esteem in children and adolescents have reported

improvements in global self-esteem (189) and the most affected

skills, namely physical appearance, athletic competence, and social

acceptance (190). However, it seems that individual (self-efficacy,

motivation), interpersonal (family and friends), and institutional

(place of residence, school, and workplace) resources are even more

important than weight loss in influencing self-esteem (180). Many

people with obesity, both adults and children, have high self-esteem,

do not suffer from severe depression, have a well-paid job, and have

good social relationships. This implies individual resistance or

resilience and the key importance of implementing a resource-

based rather than deficit-based approach to health improvement

(180). However, it is not easy to identify and develop resources

external to the individual in an environment characterized by anti-

fat attitudes.
6.4 Cognitive processes

The “complex behaviors” in weight loss and maintenance

through lifestyle modification are influenced by conscious

cognitive processes. It is, therefore, plausible that these may play

an influential role in an individual’s success or failure to maintain

lost weight. Cognitive factors have been largely neglected in

traditional obesity treatments, even if basic scientific research

demonstrates the critical role of cognitive processes in

maintaining unhealthy eating habits and making healthier eating

difficult (191). This is also supported by the results of numerous

clinical trials that have, respectively, shown associations between

specific cognitive factors and treatment discontinuation, as well as

the amount of weight lost and long-term weight maintenance

lost (192).

For example, studies in Italy indicate that people who start

weight loss treatment have an average weight loss expectation of

32%, and women have lower maximum acceptable BMI, lower

dream BMI, and higher expected 1-year BMI loss than men (193).

People seeking obesity treatment often have “primary weight loss

goals” to improve interpersonal relationships, self-confidence,

finding a partner or a new job, and not to improve health.

Available data indicate that these goals are unrealistic because

there are no obesity treatments, including bariatric surgery, that can

determine an average weight loss of more than 30% in the long

term. Furthermore, many non-health primary goals are often not

achievable even with a large amount of weight loss.

Unrealistic weight and primary goals seem to be associated with

treatment discontinuation (194, 195) or not maintaining lost weight

because people consider the result unsatisfactory (192). In addition,

people who have unrealistic weight goals often intermittently adopt

a dysfunctional dietary restriction that contributes to triggering and

maintaining binge eating episodes (192).
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6.5 Events, associated mood changes,
and eating

Overeating and binge eating are often triggered and maintained

by life events and associated mood changes (196). The main

mechanisms that explain the association between life events and

mood changes are as follows: (a) food can be used to distract from

adverse events and worrying problems; (b) food can help to cope

with emotional states; (c) food can be used to create positive

emotions (177). The episode of overeating, after an initial

attenuation of the negative emotional state, in certain people

often produces feelings of guilt, anxiety, and low mood, which, in

turn, can trigger a new episode of uncontrolled eating.

A subgroup of people, particularly those in whom obesity

coexists with binge-eating disorder, a disorder that is more

common in women than men (176), also have a coexisting

problem of “mood intolerance.” This expression defines

individuals who are exceptionally sensitive to emotions, with

frequent negative emotions (e.g., anger, anxiety), and have

difficulty tolerating and managing them. Those who suffer from

this problem often adopt dysfunctional mood-modulating

behaviors, such as taking psychoactive substances (alcohol or

tranquilizers) or bingeing, which reduce awareness of the

emotional state (and associated thoughts) entailing, however, a

personal cost (emotional, interpersonal, and physical) (177).
6.6 Personality

Many of the early personality studies in obesity, which used the

Karolinska Scales of Personality or the Minnesota Multiphasic

Inventory, produced inconsistent results, but this is not

surprising, as both of these tools were designed and validated to

assess pathological personality traits rather than interindividual

variation in normal personality traits (197).

In recent years, the Temperament and Character Inventory

(TCI) (198), designed to provide a comprehensive assessment of

non-pathological personality, has been widely used to study obesity

and has highlighted that certain personality traits appear to play a

role in influencing obesity management (199). In particular, low

scores in “novelty seeking” (a temperament trait that reflects a

tendency to be motivated by a desire to avoid aversive experiences)

and “self-direction” (a character trait that measures self-concept,

self-acceptance, and the ability to direct one’s life according to

personal goals and values) at baseline appear to predict better

weight loss outcomes at ≤ 6 months. On the contrary, higher

“persistence” scores (a temperament trait that describes resistance

to maintaining frustrating behavior) seem to predict the

maintenance of weight loss (199).

A study also found significantly higher scores on questionnaires

assessing binge eating and night eating in women with obesity

consecutively seeking treatment at eight Italian medical centers,

obesity in comparison with age-matched women in normal weight

range without eating disorders (200). High binge eating scores were
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associated with high novelty seeking and harm avoidance and low

self-directedness, the last two personality features being also

associated with high night eating scores. These data confirm that

personality traits differ between patients seeking treatment for

obesity and controls, and the presence of disordered eating is

associated with specific personality characteristics.
7 Treatment of obesity

7.1 Dietary and lifestyle interventions

Dietary and lifestyle weight-loss interventions are typically

based on energy intake reduction and increased exercise, with or

without changes in macronutrient balance and diet quality.

However, maintaining long-term adherence to weight-loss

interventions is a major issue, and rebound weight gain is

commonly observed following the initial success. The effects of

strategies combining diet with exercise have been estimated in a

recent meta-analysis (201), suggesting a moderate-to-poor long-

term success. A recent growing interest in intermittent fasting

practices, like time-restricted feeding (TRF) that confines daily

food intake to 6 to 10 hours with no calorie restriction, is

observed, although the evidence-base for TRF as an intervention

for obesity is, so far, relatively sparse. Moreover, before prescribing

TRF, clinicians should accurately evaluate the risk of precipitating

the development of disordered eating with this eating pattern,

especially in the young (202).

Females appear more health-orientated, motivated to lose

weight, and more frequently participate in weight loss studies

(203). Commercial weight loss programs are considered “female-

focused,” reporting low participation of males (204). Reasons for

such disparity could be insufficient motivation to lose weight in

males or that females experience more social pressure.

Any nutrition intervention should be tailored to consider

personal values, preferences, and social determinants of eating

habits. According to the most recent European Association for

the Study of Obesity (EASO) Position Statement on medical

nutrition therapy for the management of overweight and obesity,

several nutrition interventions, including the Mediterranean diet,

vegetarian diets, Nordic and low-carbohydrate diets, among others,

have been proven to affect positively metabolic parameters with or

without weight loss (205). Recent evidence also supports partial

meal replacements to improve weight loss and body composition

outcomes compared to traditional lifestyle interventions (206).

A metanalysis of 58 weight loss intervention studies based on

different diet and exercise prescriptions showed that men lose more

absolute and percent body weight (possibly due to their greater

baseline weight) in response to the same lifestyle modification

(207). Moreover, weight loss affects metabolic outcomes

differently in males and females, with males showing a better

response in terms of intra-abdominal fat loss and improvements

in the metabolic risk factor profile (208). However, very few studies

have explored gender differences with one specific dietary regimen,

and most of those that did lacked supporting data.
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7.2 Pharmacologic treatments

Besides dietary and behavioural changes, other non-surgical

interventions include weight loss pharmacotherapies. Metformin

has not been officially approved as a weight-loss promoting drug

because its effect on different populations remains inconsistent,

although metformin is often used to improve insulin resistance also

in non-diabetic subjects with obesity. and hyperandrogenism in

women with PCOS (209). Orlistat exerts a peripheral effect

consisting in the inhibition of gastric and pancreatic lipases with

consequent dietary fat absorption decrease and moderate weight

loss (210). A combination of the dopamine and norepinephrine

reuptake inhibitor bupropion and the opioid antagonist naltrexone,

fosters satiety while decreasing food craving (211, 212). Naltrexone,

an opioid antagonist with indication for the treatment of opioid and

alcohol dependence, inhibits the appetite-enhancing effects of beta-

endorphin caused by cannabinoid-1 receptor activation decreasing

food cravings in subjects with obesity and binge-eating (213).

Bupropion stimulates POMC neurons in the hypothalamus to

secrete a-melanocyte stimulating hormone that has anorexic

properties, and when combined with naltrexone, it has been

shown to alleviate addictive over-eating and to display a

synergistic effect on appetite suppression, thus inducing a

consistent weight loss, even in the face of high dropout rates

(about 45%) (214). However, a recent study did not demonstrate

effectiveness for reducing binge eating, although it showed

effectiveness for weight reduction in these subjects (215). Adverse

effects of such a combination include constipation and dry mouth,

headache, insomnia, and anxiety.

Obesity increases the incidence of depression, and the

prevalence of depression is approximately double for women with

obesity compared to their male counterparts (216). Therefore, the

potential anti-depressant effects of this medication might offer dual

benefits for this population. In addition, estrogens seem to enhance

bupropion antidepressant activity and desensitize m-opioid
receptors in hypothalamic POMC neurons (217). It should also

be considered that sex steroids influence the pharmacokinetics of

both naltrexone and bupropion, being estrogens a powerful

promoter of bupropion hydroxylation and androgens potent

inhibitors of naltrexone liver hydroxylation.

GLP-1 receptor agonists (GLP-1RAs) are a class of antidiabetic

drugs that, in addition to hypoglycemic effects, have demonstrated

the ability to reduce body weight as well as important protective

effects at the CV and renal level in individuals with T2D and

obesity (218).

In 2014, the Food and Drug Administration (FDA) approved

the GLP-1RA liraglutide for chronic weight management for its

capacity to decrease appetite and enhance satiety, presumably

through effects on the central nervous system and inhibition of

gastric emptying. In an early study, patients with overweight or

obesity received daily liraglutide (up to 3.0 mg s.c.) or placebo or

orlistat for twenty weeks (219). More individuals (76%) lost more

than 5% weight with liraglutide 3.0 mg than with placebo (30%) or

orlistat (44%). To compare weight maintenance in overweight

patients without diabetes after an average of 6% weight loss with
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energy-restricted dieting, subjects were randomized either to

liraglutide (3.0 mg daily) or to placebo (220). During this

maintenance period, the weight loss with liraglutide was 6.2%,

and with placebo 0.2%. Nausea, vomiting, and diarrhea may

occur as side effects of liraglutide. The SCALE trial followed 3731

patients with obesity receiving liraglutide; over 56 weeks, 63.2% and

33.1% of all participants significantly lost at least 5% and 10% of

their body weight, respectively. This trial comprised 78% of women

with an average age of 45 (221). A drawback with this drug is that it

requires to be administered by daily subcutaneous injections.

Liraglutide may improve human fertility, particularly for women

with PCOS (222). However, information on putative gender-related

differences in efficacy and safety of liraglutide is scanty, and large,

well-conducted real-life studies would be helpful.
7.3 Novel anti-obesity drugs

7.3.1 Semaglutide
The main objectives of weight management are to achieve a

clinically significant and sustained weight loss, minimizing weight

regain to prevent the progression of T2D and other obesity-related

complications (223). Weight loss of 5% or more of initial body

weight improves the obesity-related complications, while a higher

weight reduction produces greater overall health benefits. New

drugs for treating obesity, combined with lifestyle changes, have

demonstrated their important effectiveness in facilitating weight

control (224). Among the GLP1-RAs, semaglutide is a potent long-

acting analog that requires once-weekly administration and has

been shown to reduce energy intake and hunger and increase

feelings of satiety and fullness (225). In 2021, after the publication

of the results of the studies STEP (Semaglutide Treatment Effect in

People with Obesity) 1–4, the FDA approved semaglutide 2.4 mg

for weight control in people with overweight (and comorbidity) or

obesity. Specifically, it was demonstrated that semaglutide 2.4 mg

resulted in significant and sustained weight loss at 68 weeks, with an

approximate reduction from baseline weight of 14-16% in

participants without T2D and 9.6% in those with T2D, along with

improvements in cardiometabolic risk factors and with a safety

profile (218). STEP 5 (Semaglutide Treatment Effect in People with

Obesity) confirmed the reduction of 15% of body weight in people

with obesity after two-years of treatment (226). The STEP studies

also confirmed that people with T2D have more difficulty losing

weight than individuals without T2D, also showing a gender

difference, with a better response of women to treatment

compared to men (227). Furthermore, the results published from

the study SELECT (Semaglutide Effects on Heart Disease and Stroke

in Patients with Overweight or Obesity), in which weekly treatment

with semaglutide 2.4 mg in not diabetic patients with overweight/

obesity and established CVD disease resulted in the reduction of the

20% risk of heart attack or stroke. Then, the multiple potential of

semaglutide, initially developed for diabetes and weight

management, has now expanded to include the reduction of CV

events (228) . Global ly , these observations encourage

individualization of obesity pharmacotherapy by exploring
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differences based on gender and comorbidities, such as T2D and

CVD risks, to optimize the potential benefits of semaglutide in these

different medical contexts (227) as well as many other drugs able to

obtain a more marked reduction in body weight.

7.3.2 Tirzepatide
Tirzepatide is a novel and first-in-class glucose-dependent

insulinotropic polypeptide/glucagon-like peptide 1 receptor

agonist (GIP/GLP-1RA), approved in 2022 by FDA and in 2023

by the European Medicines Agency (EMA) as an adjunct to diet and

exercise for the treatment of T2D, and in 2023 for chronic weight

management by FDA (229, 230).

The effects of tirzepatide on glycaemic control are mediated not

only by improvements in glucose-dependent insulin secretion and

reduced fasting and meal-stimulated glucagon levels (231) but also

by significant body weight loss. Indeed, activation of both GLP-1

and GIP receptors in the CNS also appears highly effective in

reducing appetite and food intake (232–234) and, in preclinical

studies, high-caloric and fat diet preference (235). Tirzepatide has

been suggested to promote thermogenesis in BAT in murine models

(236). However, a clinical trial to assess energy expenditure utilizing

respiratory chambers is ongoing (237).

In the phase 3 clinical program (SURPASS), designed to assess

the efficacy and safety of once-weekly subcutaneously injected

tirzepatide (5, 10, and 15 mg), as monotherapy or combination

therapy, tirzepatide demonstrated superior glycemic and body

weight control compared with placebo and active comparators

across a broad spectrum of patients with T2D (238–243),

irrespective of gender (244, 245).

Tirzepatide also induced other cardiovascular benefits by

improving the lipid profile and reducing blood pressure, visceral

adiposity, and intra-hepatic triglycerides (238–243, 246).

Although the potential for tirzepatide to improve CV outcomes

is currently being assessed in a CV outcomes trial (SURPASS

CVOT), preliminary evidence for CV safety has been provided by

the SURPASS-4, a trial recruiting subjects with known CVD or at

high CV risk (241), and by a metanalysis covering the whole clinical

trial program (247). Similarly, kidney-protective effects were

suggested by a prespecified and post-hoc analysis of the

SURPASS-4 trial (248). Subgroup analysis for the primary

outcomes by sex did not differ from overall results (247, 248).

However, subjects achieving higher categorical body weight (>15%)

were more likely to be women (249).

The efficacy and safety of tirzepatide have been evaluated in

weight reduction and maintenance in adults with obesity in the

SURMOUNT trials (229), whose initial data support greater efficacy

for clinically meaningful weight reduction beyond that achieved

with agents currently approved for obesity (250) (251, 252). Indeed,

in the SURMOUNT-1 trial, the mean weight reduction was -15.0%

with 5 mg, -19.5% with 10 mg, and -20.9% with a 15 mg weekly dose

compared to -3.1% with a placebo. The percentages of individuals

with a substantial weight reduction of 5% or more were 85%, 89%,

and 91% with tirzepatide 5 mg, 10 mg, and 15 mg, respectively

(250). Instead, when considering a reduction in body weight of 25%

or more, 15%, 32% and 36% of participants in the 5 mg, 10 mg and
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15 mg tirzepatide groups, respectively, met this target, as compared

with 1.5% of participants in the placebo group (250).

The tolerability profile of tirzepatide was similar to what has

been reported for selective GLP-1RAs, with most of the adverse

events being gastrointestinal, mild-moderate in severity, and

occurring during dose-escalation.

7.3.3 Lifestyle modification and intensive
behavior therapy associated with the new
medications to treat obesity

New medications to treat obesity should always be associated

with lifestyle modification. This recommendation is based on

several considerations. First, STEP and SURMONT trials

associated semaglutide and tirzepatide with a lifestyle

modification intervention. The approach included regular lifestyle

counseling sessions delivered by a dietitian or a qualified health care

professional to help the participants adhere to healthful, balanced

meals with a moderate caloric deficit (e.g., 500 calories per day) and

physical activity (e.g., at least 150 minutes of per week) (250, 253),

often with the help of basic behavior procedures such as the daily

recording the diet and activity within a diary or using a smartphone

application (253). Second, a healthy eating pattern and physical

fitness are associated with reduced mortality and cardiovascular

diseases, even without significant weight loss (254, 255). Third,

regular physical activity helps reduce the loss of fat-free mass during

weight loss (254, 256). Finally, regular counseling with a specialist in

lifestyle modification and obesity can help the patients maintain

their motivation and develop specific skills to address the inevitable

obstacles during the long weight loss and maintenance

process (257).

An unanswered question, however, is whether intensive behavioral

therapy (BT) with an initial low-calorie and meal-replacement diet or

specialist cognitive behavior therapy (CBT) for obesity are still

necessary to help the patients achieve the long-term weight loss

obtained by semaglutide and tirzepatide (257). For example, the

STEP 3 randomized clinical trial associated semaglutide 2.4 mg

combined with intensive behavioral therapy (i.e., 30 counseling visits)

(258). The trial also includes an initial 8-week low-calorie diet 1000-

1200 kcal/d provided as meal replacements, followed by a hypocaloric

diet (1200-1800 kcal/d) of conventional food for the remainder of the

68 weeks. However, despite the intensive treatment, the STEP 3 trial

did not achieve better weight loss outcomes than those of the STEP 1

trial in which semaglutide 2.4 mg was combined with a less-intensive

lifestyle intervention program (i.e., 18 behavioral counseling visits every

4 weeks in 68 weeks) and no initial low-calorie, meal-replacement

diet (253).

The above data have important clinical implications and open

new scenarios for the management of obesity. First, prescribing

diets characterized by severe caloric restriction and meal

replacements no longer appears necessary to enhance adherence

to caloric restriction and weight loss with the new medications for

obesity. Second, less-intensive lifestyle and costly interventions,

which can be easily disseminated in real-world treatment of

obesity, appear to obtain similar results of intensive BT when

both treatments are associated with semaglutide. However,
Frontiers in Endocrinology 14
further studies should confirm these findings. Third, assessing the

optimal intensity and duration of lifestyle modification counseling

associated with the new drugs is also needed. Finally, it will be

essential to determine if specific cognitive behavior strategies and

procedures associated with the medications for obesity might help

the patients adopt a better healthy lifestyle and psychological

wellness and reduce the attrition and/or limit the weight regain

when the drug is suspended (259).
7.4 Bariatric surgery

Bariatric surgery, born in the 50s, has had a great boost with the

advent of laparoscopy that has greatly reduced the risks that are

currently superimposable to those of cholecystectomy.

For individuals with a BMI > 40 or BMI > 35 with comorbidities

who are unable to lose weight, by lifestyle modifications or

pharmacotherapy, standard bariatric surgery allows important

and durable weight loss mainly in malabsorption procedures like

Roux-en-Y gastric bypass (RYGB) and bilio-pancreatic diversion

(DBP), but also in restrictive surgery as SG and adjustable gastric

banding (70).

Over the years, many endoscopic bariatric modalities, including

intragastric balloons, endoscopic sleeve techniques and other novel

therapies have emerged as minimally invasive, cost-effective, and

reversible treatments in mild to moderate obesity with no or

borderline statistically significant differences in postoperative

complications compared to standard bariatric interventions (260).

BS is more commonly undergone by women than men (78% vs

22%) (261). The reasons behind this inequality lie in greater health

awareness and perceptions of obesity in women who more

frequently pursue weight loss programs increasing the probability

that women will be direct by clinicians toward BS (261).

Analyzing weight loss after BS from a gender perspective, data in

the literature reported that the differences in weight loss between men

and women were minimal and not significant (217). With regard to

secondary outcomes, poorer psychological outcomes have been

reported in women, including a worse body image, depression and

lower satisfaction with the surgery itself with greater requests for post-

operative hospital readmissions (262). On the other hand, women

usually show better outcomes of the other obesity complications

probably because they tend to be treated earlier than males (262).

However, recent studies suggest that these differences in post-

operative outcomes are decreasing probably for the improvement of

BS procedures (263). Since the underlying mechanisms through which

sex influences postoperative complications have not yet been

elucidated, further studies are needed to explore gender-specific

differences in bariatric surgery outcomes which may underlie

differences in obesity-related comorbidities. In fact, the limited

available guidelines developed by bariatric surgeons do not take in

consideration the gender in the decision-making process for patient

selection (264). Nevertheless, the clinicians should pay more attention

to preoperative counseling of women and to the psychological effects

after surgery to promptly help them to manage expectations after BS

and their relationship with body image (263).
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8 Summary and conclusions

Obesity is a heterogeneous condition with complex interactions

among sex/gender, sociocultural, environmental, and biological factors.

Obesity is more prevalent in women than in men in most developed

countries, and several clinical and psychological obesity complications

show sex-specific patterns. Females differ in fat distribution, with males

tending to store more visceral fat, which is highly correlated to

increased cardiovascular risk. Although women are more likely to be

diagnosed with obesity and appear more motivated to lose weight, as

confirmed by their greater representation in clinical trials, males show

better outcomes in terms of body weight and intra-abdominal fat loss

and improvements in the metabolic risk profile.

With regard to novel anti-obesity drugs, RCTs also suggest a

gender difference, with a better response of women to treatment

compared to men (227, 249).

Globally, these observations encourage further studies exploring

gender differences in obesity and individualization of obesity

pharmacotherapy to optimize the potential benefits of novel anti-

obesity drugs in different medical contexts.
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